On the $$\mathbb {K}$$ K -Riemann integral and Hermite–Hadamard inequalities for $$\mathbb {K}$$ K -convex functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One Cyclic Codes over $\mathbb{F}_{p^k} + v\mathbb{F}_{p^k} + v^2\mathbb{F}_{p^k} + ... + v^r\mathbb{F}_{p^k}$

In this paper, we investigate cyclic code over the ring Fpk + vFpk + v 2 Fpk + ...+ v r Fpk , where v = v, p a prime number, r > 1 and gcd(r, p) = 1, we prove as generalisation of [9] that these codes are principally generated, give generator polynomial and idempotent depending on idempotents over this ring as response to an open problem related in [11]. we also give a gray map and proprieties ...

متن کامل

On polynomial approximations over $\mathbb{Z}/2^k\mathbb{Z}$

We study approximation of Boolean functions by low-degree polynomials over the ring Z/2kZ. More precisely, given a Boolean function F : {0, 1}n → {0, 1}, define its k-lift to be Fk : {0, 1}n → {0, 2k−1} by Fk(x) = 2k−F(x) (mod 2k). We consider the fractional agreement (which we refer to as γd,k(F)) of Fk with degree d polynomials from Z/2 Z[x1, . . . , xn]. Our results are the following: • Incr...

متن کامل

Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.

متن کامل

$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$

Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.

متن کامل

Inequalities for quermassintegrals on k-convex domains

In this paper, we study the Aleksandrov–Fenchel inequalities for quermassintegrals on a class of nonconvex domains. Our proof uses optimal transport maps as a tool to relate curvature quantities of different orders defined on the boundary of the domain. © 2013 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Aequationes mathematicae

سال: 2017

ISSN: 0001-9054,1420-8903

DOI: 10.1007/s00010-017-0472-0